新书推介:《语义网技术体系》
作者:瞿裕忠,胡伟,程龚
   XML论坛     W3CHINA.ORG讨论区     计算机科学论坛     SOAChina论坛     Blog     开放翻译计划     新浪微博  
 
  • 首页
  • 登录
  • 注册
  • 软件下载
  • 资料下载
  • 核心成员
  • 帮助
  •   Add to Google

    >> 搜索引擎, 信息分类与检索, 语义搜索, Lucene, Nutch, GRUB, Larbin, Weka
    [返回] 计算机科学论坛计算机技术与应用『 Web挖掘技术 』 → weka functional tree算法的输出结果不明白!! 查看新帖用户列表

      发表一个新主题  发表一个新投票  回复主题  (订阅本版) 您是本帖的第 5710 个阅读者浏览上一篇主题  刷新本主题   树形显示贴子 浏览下一篇主题
     * 贴子主题: weka functional tree算法的输出结果不明白!! 举报  打印  推荐  IE收藏夹 
       本主题类别:     
     c408133217 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:1
      积分:52
      门派:XML.ORG.CN
      注册:2012/3/9

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给c408133217发送一个短消息 把c408133217加入好友 查看c408133217的个人资料 搜索c408133217在『 Web挖掘技术 』 的所有贴子 引用回复这个贴子 回复这个贴子 查看c408133217的博客楼主
    发贴心情 weka functional tree算法的输出结果不明白!!

    functional tree和logistic model tree的inner nodes不是一个回归公式吗,为什么weka的输出结果是两个互为负的回归公式。而且最后的leaves node后class1和class2是什么标准分?
    下面一个结果的示例,两种模型的weka输出结果类似,所以只放上functional tree的输出结果。
    ---------------分割线-------------------------------


    === Run information ===

    Scheme:weka.classifiers.trees.FT -I 15 -F 0 -M 15 -W 0.0
    Relation: training-weka.filters.unsupervised.attribute.Remove-R1-weka.filters.unsupervised.attribute.Remove-R3-10,34-1171,1228-1302-weka.filters.unsupervised.attribute.Remove-R22,36-38,40,45,49-50,59,62,66-77,79
    Instances:204
    Attributes:59
                  MW
                  AMW
                  nAT
                  nSK
                  nBT
                  nBO
                  nBM
                  SCBO
                  nCIC
                  nCIR
                  RBN
                  RBF
                  nDB
                  nTB
                  nAB
                  nH
                  nC
                  nN
                  nO
                  nP
                  nS
                  nCL
                  nBR
                  nX
                  nCp
                  nCs
                  nCt
                  nCq
                  nCrH2
                  nCrHR
                  nCrR2
                  nCaH
                  nCaR
                  nCconjR
                  nNCO
                  nCOOHPh
                  nCOOR
                  nCOORPh
                  nCONHR
                  nCONR2
                  nOCON
                  nCOXPh
                  nCO
                  nCONN
                  nNH2
                  nNH2Ph
                  nNHR
                  nNHRPh
                  nNR2
                  nNR2Ph
                  nCN
                  nNO2Ph
                  nOH
                  nOHPh
                  nOHp
                  nPhX
                  nHDon
                  nHAcc
                  judgement
    Test mode:10-fold cross-validation

    === Classifier model (full training set) ===

    FT tree
    ------------------

    N0#1 <= 0.538508
    |   N0#2 <= 0.188679: FT_1:15/45 (76)
    |   N0#2 > 0.188679: FT_2:15/45 (32)
    N0#1 > 0.538508: FT_3:15/30 (96)

    Number of Leaves  :  3

    Size of the Tree :  5
    FT_N0#1:
    Class 0 :
    -1.45 +
    [MW] * 0    +
    [nCIR] * 0.1  +
    [nDB] * -0.14 +
    [nN] * 0.5  +
    [nS] * 0.36 +
    [nCp] * 0.17 +
    [nCrH2] * 0.07 +
    [nCrHR] * 0.21 +
    [nCrR2] * 0.43 +
    [nCaR] * 0.07 +
    [nCOORPh] * -0.58 +
    [nNH2Ph] * 0.47 +
    [nNR2] * -0.28 +
    [nPhX] * 0.28

    Class 1 :
    1.45 +
    [MW] * 0    +
    [nCIR] * -0.1 +
    [nDB] * 0.14 +
    [nN] * -0.5 +
    [nS] * -0.36 +
    [nCp] * -0.17 +
    [nCrH2] * -0.07 +
    [nCrHR] * -0.21 +
    [nCrR2] * -0.43 +
    [nCaR] * -0.07 +
    [nCOORPh] * 0.58 +
    [nNH2Ph] * -0.47 +
    [nNR2] * 0.28 +
    [nPhX] * -0.28

    FT_N0#2:
    Class 0 :
    -2.22 +
    [MW] * 0.01 +
    [nCIR] * 0.1  +
    [nDB] * -0.14 +
    [nN] * 0.5  +
    [nS] * 0.36 +
    [nBR] * 1.52 +
    [nCp] * 0.17 +
    [nCq] * 1.56 +
    [nCrH2] * 0.18 +
    [nCrHR] * 0.56 +
    [nCrR2] * 1.95 +
    [nCaR] * 0.07 +
    [nCOOR] * -0.93 +
    [nCOORPh] * -0.58 +
    [nCONHR] * -0.54 +
    [nCONR2] * 1.52 +
    [nCOXPh] * -0.74 +
    [nNH2] * -0.77 +
    [nNH2Ph] * 0.47 +
    [nNR2] * -0.28 +
    [nNR2Ph] * 1.31 +
    [nPhX] * 0.8  +
    [nHAcc] * -0.13

    Class 1 :
    2.22 +
    [MW] * -0.01 +
    [nCIR] * -0.1 +
    [nDB] * 0.14 +
    [nN] * -0.5 +
    [nS] * -0.36 +
    [nBR] * -1.52 +
    [nCp] * -0.17 +
    [nCq] * -1.56 +
    [nCrH2] * -0.18 +
    [nCrHR] * -0.56 +
    [nCrR2] * -1.95 +
    [nCaR] * -0.07 +
    [nCOOR] * 0.93 +
    [nCOORPh] * 0.58 +
    [nCONHR] * 0.54 +
    [nCONR2] * -1.52 +
    [nCOXPh] * 0.74 +
    [nNH2] * 0.77 +
    [nNH2Ph] * -0.47 +
    [nNR2] * 0.28 +
    [nNR2Ph] * -1.31 +
    [nPhX] * -0.8 +
    [nHAcc] * 0.13

    FT_1:
    Class 0 :
    -1.92 +
    [MW] * 0.01 +
    [nBT] * -0.06 +
    [nCIR] * 0.1  +
    [RBF] * 4.33 +
    [nDB] * -0.45 +
    [nH] * -0.27 +
    [nN] * 0.5  +
    [nS] * 2.88 +
    [nBR] * 1.52 +
    [nCp] * 1.08 +
    [nCq] * 1.56 +
    [nCrH2] * 0.18 +
    [nCrHR] * 0.56 +
    [nCrR2] * 1.95 +
    [nCaR] * 0.07 +
    [nCOOHPh] * 1.16 +
    [nCOOR] * -0.93 +
    [nCOORPh] * -0.58 +
    [nCONHR] * -0.54 +
    [nCONR2] * 1.52 +
    [nCOXPh] * -0.74 +
    [nNH2] * -0.77 +
    [nNH2Ph] * 0.47 +
    [nNR2] * -0.28 +
    [nNR2Ph] * 1.31 +
    [nNO2Ph] * 1.8  +
    [nPhX] * 0.8  +
    [nHDon] * -1.19 +
    [nHAcc] * -0.13

    Class 1 :
    1.92 +
    [MW] * -0.01 +
    [nBT] * 0.06 +
    [nCIR] * -0.1 +
    [RBF] * -4.33 +
    [nDB] * 0.45 +
    [nH] * 0.27 +
    [nN] * -0.5 +
    [nS] * -2.88 +
    [nBR] * -1.52 +
    [nCp] * -1.08 +
    [nCq] * -1.56 +
    [nCrH2] * -0.18 +
    [nCrHR] * -0.56 +
    [nCrR2] * -1.95 +
    [nCaR] * -0.07 +
    [nCOOHPh] * -1.16 +
    [nCOOR] * 0.93 +
    [nCOORPh] * 0.58 +
    [nCONHR] * 0.54 +
    [nCONR2] * -1.52 +
    [nCOXPh] * 0.74 +
    [nNH2] * 0.77 +
    [nNH2Ph] * -0.47 +
    [nNR2] * 0.28 +
    [nNR2Ph] * -1.31 +
    [nNO2Ph] * -1.8 +
    [nPhX] * -0.8 +
    [nHDon] * 1.19 +
    [nHAcc] * 0.13

    FT_2:
    Class 0 :
    -0.83 +
    [MW] * 0.01 +
    [nBT] * -0.03 +
    [nCIR] * -0.03 +
    [nDB] * -0.14 +
    [nN] * -0.65 +
    [nS] * 0.36 +
    [nBR] * 1.52 +
    [nCp] * 0.17 +
    [nCq] * 2.29 +
    [nCrH2] * 0.18 +
    [nCrHR] * 0.56 +
    [nCrR2] * 1.95 +
    [nCaH] * 0.05 +
    [nCaR] * 0.07 +
    [nCconjR] * 0.7  +
    [nCOOHPh] * -0.64 +
    [nCOOR] * -2.8 +
    [nCOORPh] * -0.58 +
    [nCONHR] * -0.54 +
    [nCONR2] * 1.52 +
    [nCOXPh] * -2.31 +
    [nCO] * 0.36 +
    [nNH2] * -0.77 +
    [nNH2Ph] * 0.47 +
    [nNHR] * 1.57 +
    [nNR2] * -0.28 +
    [nNR2Ph] * 2    +
    [nOH] * -1.16 +
    [nPhX] * 0.8  +
    [nHAcc] * -0.13

    Class 1 :
    0.83 +
    [MW] * -0.01 +
    [nBT] * 0.03 +
    [nCIR] * 0.03 +
    [nDB] * 0.14 +
    [nN] * 0.65 +
    [nS] * -0.36 +
    [nBR] * -1.52 +
    [nCp] * -0.17 +
    [nCq] * -2.29 +
    [nCrH2] * -0.18 +
    [nCrHR] * -0.56 +
    [nCrR2] * -1.95 +
    [nCaH] * -0.05 +
    [nCaR] * -0.07 +
    [nCconjR] * -0.7 +
    [nCOOHPh] * 0.64 +
    [nCOOR] * 2.8  +
    [nCOORPh] * 0.58 +
    [nCONHR] * 0.54 +
    [nCONR2] * -1.52 +
    [nCOXPh] * 2.31 +
    [nCO] * -0.36 +
    [nNH2] * 0.77 +
    [nNH2Ph] * -0.47 +
    [nNHR] * -1.57 +
    [nNR2] * 0.28 +
    [nNR2Ph] * -2 +
    [nOH] * 1.16 +
    [nPhX] * -0.8 +
    [nHAcc] * 0.13

    FT_3:
    Class 0 :
    0.02 +
    [MW] * 0    +
    [nBT] * -0.02 +
    [nCIR] * 0.1  +
    [RBF] * -1.76 +
    [nDB] * 0.05 +
    [nN] * 0.5  +
    [nP] * -0.89 +
    [nS] * 1.28 +
    [nCL] * -0.16 +
    [nCp] * 0.17 +
    [nCs] * 0.03 +
    [nCrH2] * 0.07 +
    [nCrHR] * 0.21 +
    [nCrR2] * 0.43 +
    [nCaR] * 0.07 +
    [nCOORPh] * -0.58 +
    [nOCON] * -0.89 +
    [nNH2Ph] * 0.06 +
    [nNR2] * -0.78 +
    [nNO2Ph] * 0.34 +
    [nOHPh] * -0.31 +
    [nPhX] * 0.28

    Class 1 :
    -0.02 +
    [MW] * 0    +
    [nBT] * 0.02 +
    [nCIR] * -0.1 +
    [RBF] * 1.76 +
    [nDB] * -0.05 +
    [nN] * -0.5 +
    [nP] * 0.89 +
    [nS] * -1.28 +
    [nCL] * 0.16 +
    [nCp] * -0.17 +
    [nCs] * -0.03 +
    [nCrH2] * -0.07 +
    [nCrHR] * -0.21 +
    [nCrR2] * -0.43 +
    [nCaR] * -0.07 +
    [nCOORPh] * 0.58 +
    [nOCON] * 0.89 +
    [nNH2Ph] * -0.06 +
    [nNR2] * 0.78 +
    [nNO2Ph] * -0.34 +
    [nOHPh] * 0.31 +
    [nPhX] * -0.28


    Time taken to build model: 0.44seconds

    === Stratified cross-validation ===
    === Summary ===

    Correctly Classified Instances         157               76.9608 %
    Incorrectly Classified Instances        47               23.0392 %
    Kappa statistic                          0.5389
    Mean absolute error                      0.2359
    Root mean squared error                  0.4548
    Relative absolute error                 47.3282 %
    Root relative squared error             91.1099 %
    Total Number of Instances              204     

    === Detailed Accuracy By Class ===

                   TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class
                     0.759     0.219      0.796     0.759     0.777      0.771    N
                     0.781     0.241      0.743     0.781     0.761      0.771    R
    Weighted Avg.    0.77      0.229      0.771     0.77      0.77       0.771

    === Confusion Matrix ===

      a  b   <-- classified as
    82 26 |  a = N
    21 75 |  b = R


       收藏   分享  
    顶(0)
      




    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2012/3/9 13:58:00
     
     GoogleAdSense
      
      
      等级:大一新生
      文章:1
      积分:50
      门派:无门无派
      院校:未填写
      注册:2007-01-01
    给Google AdSense发送一个短消息 把Google AdSense加入好友 查看Google AdSense的个人资料 搜索Google AdSense在『 Web挖掘技术 』 的所有贴子 访问Google AdSense的主页 引用回复这个贴子 回复这个贴子 查看Google AdSense的博客广告
    2025/1/5 2:25:56

    本主题贴数1,分页: [1]

    管理选项修改tag | 锁定 | 解锁 | 提升 | 删除 | 移动 | 固顶 | 总固顶 | 奖励 | 惩罚 | 发布公告
    W3C Contributing Supporter! W 3 C h i n a ( since 2003 ) 旗 下 站 点
    苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
    78.125ms