新书推介:《语义网技术体系》
作者:瞿裕忠,胡伟,程龚
   XML论坛     W3CHINA.ORG讨论区     计算机科学论坛     SOAChina论坛     Blog     开放翻译计划     新浪微博  
 
  • 首页
  • 登录
  • 注册
  • 软件下载
  • 资料下载
  • 核心成员
  • 帮助
  •   Add to Google

    >> 搜索引擎, 信息分类与检索, 语义搜索, Lucene, Nutch, GRUB, Larbin, Weka
    [返回] 计算机科学论坛计算机技术与应用『 Web挖掘技术 』 → finereport爱好者论坛出品--大数据处理 查看新帖用户列表

      发表一个新主题  发表一个新投票  回复主题  (订阅本版) 您是本帖的第 9847 个阅读者浏览上一篇主题  刷新本主题   树形显示贴子 浏览下一篇主题
     * 贴子主题: finereport爱好者论坛出品--大数据处理 举报  打印  推荐  IE收藏夹 
       本主题类别:     
     ilovefine 帅哥哟,离线,有人找我吗?
      
      
      等级:大一(高数修炼中)
      文章:33
      积分:130
      门派:XML.ORG.CN
      注册:2012/8/14

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给ilovefine发送一个短消息 把ilovefine加入好友 查看ilovefine的个人资料 搜索ilovefine在『 Web挖掘技术 』 的所有贴子 引用回复这个贴子 回复这个贴子 查看ilovefine的博客楼主
    发贴心情 finereport爱好者论坛出品--大数据处理


    下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。

    1.Bloom filter

    适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集

    基本原理及要点:
    对 于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这 个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

    还有一个比较重要的问题,如 何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况 下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应 该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

    举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

    注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

    扩展:
    Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

    问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

    根 据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。 现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

    2.Hashing

    适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存

    基本原理及要点:
    hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
    碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。

    扩展:
    d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同 时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个 位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

    问题实例:
    1).海量日志数据,提取出某日访问百度次数最多的那个IP。

    IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

    3.bit-map

    适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

    基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码

    扩展:bloom filter可以看做是对bit-map的扩展

    问题实例:

    1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

    8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

    2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

    将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

    转载自:finereport爱好者论坛。


       收藏   分享  
    顶(0)
      




    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2013/4/21 21:11:00
     
     GoogleAdSense
      
      
      等级:大一新生
      文章:1
      积分:50
      门派:无门无派
      院校:未填写
      注册:2007-01-01
    给Google AdSense发送一个短消息 把Google AdSense加入好友 查看Google AdSense的个人资料 搜索Google AdSense在『 Web挖掘技术 』 的所有贴子 访问Google AdSense的主页 引用回复这个贴子 回复这个贴子 查看Google AdSense的博客广告
    2025/1/2 19:41:11

    本主题贴数1,分页: [1]

    管理选项修改tag | 锁定 | 解锁 | 提升 | 删除 | 移动 | 固顶 | 总固顶 | 奖励 | 惩罚 | 发布公告
    W3C Contributing Supporter! W 3 C h i n a ( since 2003 ) 旗 下 站 点
    苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
    62.500ms