新书推介:《语义网技术体系》
作者:瞿裕忠,胡伟,程龚
   XML论坛     W3CHINA.ORG讨论区     计算机科学论坛     SOAChina论坛     Blog     开放翻译计划     新浪微博  
 
  • 首页
  • 登录
  • 注册
  • 软件下载
  • 资料下载
  • 核心成员
  • 帮助
  •   Add to Google

    >> 本版讨论高级C/C++编程、代码重构(Refactoring)、极限编程(XP)、泛型编程等话题
    [返回] 计算机科学论坛计算机技术与应用『 C/C++编程思想 』 → 各种排序算法VC下的实现 查看新帖用户列表

      发表一个新主题  发表一个新投票  回复主题  (订阅本版) 您是本帖的第 5487 个阅读者浏览上一篇主题  刷新本主题   树形显示贴子 浏览下一篇主题
     * 贴子主题: 各种排序算法VC下的实现 举报  打印  推荐  IE收藏夹 
       本主题类别:     
     卷积内核 帅哥哟,离线,有人找我吗?
      
      
      威望:8
      头衔:总统
      等级:博士二年级(版主)
      文章:3942
      积分:27590
      门派:XML.ORG.CN
      注册:2004/7/21

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给卷积内核发送一个短消息 把卷积内核加入好友 查看卷积内核的个人资料 搜索卷积内核在『 C/C++编程思想 』的所有贴子 访问卷积内核的主页 引用回复这个贴子 回复这个贴子 查看卷积内核的博客楼主
    发贴心情 各种排序算法VC下的实现

    排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法
    对算法本身的速度要求很高。
      而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将
    给出详细的说明。

      对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。
      我将按照算法的复杂度,从简单到难来分析算法。
      第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有
    使用word,所以无法打出上标和下标)。
      第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种
    算法因为涉及树与堆的概念,所以这里不于讨论。
      第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较
    奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。
      第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。由于是模板函数
    可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。
      
      现在,让我们开始吧:
    一、简单排序算法
    由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境
    下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么
    问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。

    1.冒泡法:
    这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:
    #include <iostream.h>

    void BubbleSort(int* pData,int Count)
    {
      int iTemp;
      for(int i=1;i<Count;i++)
      {
        for(int j=Count-1;j>=i;j--)
        {
          if(pData[j]<pData[j-1])
          {
            iTemp = pData[j-1];
            pData[j-1] = pData[j];
            pData[j] = iTemp;
          }
        }
      }
    }

    void main()
    {
      int data[] = {10,9,8,7,6,5,4};
      BubbleSort(data,7);
      for (int i=0;i<7;i++)
        cout<<data[i]<<" ";
      cout<<"\n";
    }

    倒序(最糟情况)
    第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
    第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
    第一轮:7,8,10,9->7,8,9,10(交换1次)
    循环次数:6次
    交换次数:6次

    其他:
    第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
    第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
    第一轮:7,8,10,9->7,8,9,10(交换1次)
    循环次数:6次
    交换次数:3次

    上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,
    显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。
    写成公式就是1/2*(n-1)*n。
    现在注意,我们给出O方法的定义:

      若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没
    学好数学呀,对于编程数学是非常重要的!!!)

    现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
    =O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。
    再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的
    有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),
    复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的
    原因,我们通常都是通过循环次数来对比算法。


    2.交换法:
    交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
    #include <iostream.h>
    void ExchangeSort(int* pData,int Count)
    {
      int iTemp;
      for(int i=0;i<Count-1;i++)
      {
        for(int j=i+1;j<Count;j++)
        {
          if(pData[j]<pData[i])
          {
            iTemp = pData[i];
            pData[i] = pData[j];
            pData[j] = iTemp;
          }
        }
      }
    }

    void main()
    {
      int data[] = {10,9,8,7,6,5,4};
      ExchangeSort(data,7);
      for (int i=0;i<7;i++)
        cout<<data[i]<<" ";
      cout<<"\n";
    }
    倒序(最糟情况)
    第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
    第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
    第一轮:7,8,10,9->7,8,9,10(交换1次)
    循环次数:6次
    交换次数:6次

    其他:
    第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
    第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
    第一轮:7,8,10,9->7,8,9,10(交换1次)
    循环次数:6次
    交换次数:3次

    从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样
    也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以
    只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。

    3.选择法:
    现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)
    这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中
    选择最小的与第二个交换,这样往复下去。
    #include <iostream.h>
    void SelectSort(int* pData,int Count)
    {
      int iTemp;
      int iPos;
      for(int i=0;i<Count-1;i++)
      {
        iTemp = pData[i];
        iPos = i;
        for(int j=i+1;j<Count;j++)
        {
          if(pData[j]<iTemp)
          {
            iTemp = pData[j];
            iPos = j;
          }
        }
        pData[iPos] = pData[i];
        pData[i] = iTemp;
      }
    }

    void main()
    {
      int data[] = {10,9,8,7,6,5,4};
      SelectSort(data,7);
      for (int i=0;i<7;i++)
        cout<<data[i]<<" ";
      cout<<"\n";
    }
    倒序(最糟情况)
    第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
    第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
    第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
    循环次数:6次
    交换次数:2次

    其他:
    第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
    第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
    第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
    循环次数:6次
    交换次数:3次
    遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。
    我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n
    所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。


    4.插入法:
    插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张
    #include <iostream.h>
    void InsertSort(int* pData,int Count)
    {
      int iTemp;
      int iPos;
      for(int i=1;i<Count;i++)
      {
        iTemp = pData[i];
        iPos = i-1;
        while((iPos>=0) && (iTemp<pData[iPos]))
        {
          pData[iPos+1] = pData[iPos];
          iPos--;
        }
        pData[iPos+1] = iTemp;
      }
    }

    void main()
    {
      int data[] = {10,9,8,7,6,5,4};
      InsertSort(data,7);
      for (int i=0;i<7;i++)
        cout<<data[i]<<" ";
      cout<<"\n";
    }

    倒序(最糟情况)
    第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
    第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
    第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
    循环次数:6次
    交换次数:3次

    其他:
    第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
    第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
    第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
    循环次数:4次
    交换次数:2次

    上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,
    因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<=
    1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单
    排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似
    选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’
    而这里显然多了一些,所以我们浪费了时间。

    最终,我个人认为,在简单排序算法中,选择法是最好的。


       收藏   分享  
    顶(0)
      




    ----------------------------------------------
    事业是国家的,荣誉是单位的,成绩是领导的,工资是老婆的,财产是孩子的,错误是自己的。

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2006/4/18 16:56:00
     
     卷积内核 帅哥哟,离线,有人找我吗?
      
      
      威望:8
      头衔:总统
      等级:博士二年级(版主)
      文章:3942
      积分:27590
      门派:XML.ORG.CN
      注册:2004/7/21

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给卷积内核发送一个短消息 把卷积内核加入好友 查看卷积内核的个人资料 搜索卷积内核在『 C/C++编程思想 』的所有贴子 访问卷积内核的主页 引用回复这个贴子 回复这个贴子 查看卷积内核的博客2
    发贴心情 
    二、高级排序算法:
    高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。
    它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后
    把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使
    用这个过程(最容易的方法——递归)。

    1.快速排序:
    #include <iostream.h>

    void run(int* pData,int left,int right)
    {
      int i,j;
      int middle,iTemp;
      i = left;
      j = right;
      middle = pData[(left+right)/2]; //求中间值
      do{
        while((pData[i]<middle) && (i<right))//从左扫描大于中值的数
          i++;     
        while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
          j--;
        if(i<=j)//找到了一对值
        {
          //交换
          iTemp = pData[i];
          pData[i] = pData[j];
          pData[j] = iTemp;
          i++;
          j--;
        }
      }while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

      //当左边部分有值(left<j),递归左半边
      if(left<j)
        run(pData,left,j);
      //当右边部分有值(right>i),递归右半边
      if(right>i)
        run(pData,i,right);
    }

    void QuickSort(int* pData,int Count)
    {
      run(pData,0,Count-1);
    }

    void main()
    {
      int data[] = {10,9,8,7,6,5,4};
      QuickSort(data,7);
      for (int i=0;i<7;i++)
        cout<<data[i]<<" ";
      cout<<"\n";
    }

    这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
    1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
    2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
    第一层递归,循环n次,第二层循环2*(n/2)......
    所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
    所以算法复杂度为O(log2(n)*n)
    其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变
    成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全
    不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。
    如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢
    于快速排序(因为要重组堆)。

    ----------------------------------------------
    事业是国家的,荣誉是单位的,成绩是领导的,工资是老婆的,财产是孩子的,错误是自己的。

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2006/4/18 16:58:00
     
     卷积内核 帅哥哟,离线,有人找我吗?
      
      
      威望:8
      头衔:总统
      等级:博士二年级(版主)
      文章:3942
      积分:27590
      门派:XML.ORG.CN
      注册:2004/7/21

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给卷积内核发送一个短消息 把卷积内核加入好友 查看卷积内核的个人资料 搜索卷积内核在『 C/C++编程思想 』的所有贴子 访问卷积内核的主页 引用回复这个贴子 回复这个贴子 查看卷积内核的博客3
    发贴心情 
    三、其他排序
    1.双向冒泡:
    通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。
    代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。
    这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。
    反正我认为这是一段有趣的代码,值得一看。
    #include <iostream.h>
    void Bubble2Sort(int* pData,int Count)
    {
      int iTemp;
      int left = 1;
      int right =Count -1;
      int t;
      do
      {
        //正向的部分
        for(int i=right;i>=left;i--)
        {
          if(pData[i]<pData[i-1])
          {
            iTemp = pData[i];
            pData[i] = pData[i-1];
            pData[i-1] = iTemp;
            t = i;
          }
        }
        left = t+1;

        //反向的部分
        for(i=left;i<right+1;i++)
        {
          if(pData[i]<pData[i-1])
          {
            iTemp = pData[i];
            pData[i] = pData[i-1];
            pData[i-1] = iTemp;
            t = i;
          }
        }
        right = t-1;
      }while(left<=right);
    }

    void main()
    {
      int data[] = {10,9,8,7,6,5,4};
      Bubble2Sort(data,7);
      for (int i=0;i<7;i++)
        cout<<data[i]<<" ";
      cout<<"\n";
    }


    2.SHELL排序
    这个排序非常复杂,看了程序就知道了。
    首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。
    工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序
    以次类推。
    #include <iostream.h>
    void ShellSort(int* pData,int Count)
    {
      int step[4];
      step[0] = 9;
      step[1] = 5;
      step[2] = 3;
      step[3] = 1;

      int iTemp;
      int k,s,w;
      for(int i=0;i<4;i++)
      {
        k = step[i];
        s = -k;
        for(int j=k;j<Count;j++)
        {
          iTemp = pData[j];
          w = j-k;//求上step个元素的下标
          if(s ==0)
          {
            s = -k;
            s++;
            pData[s] = iTemp;
          }
          while((iTemp<pData[w]) && (w>=0) && (w<=Count))
          {
            pData[w+k] = pData[w];
            w = w-k;
          }
          pData[w+k] = iTemp;
        }
      }
    }

    void main()
    {
      int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
      ShellSort(data,12);
      for (int i=0;i<12;i++)
        cout<<data[i]<<" ";
      cout<<"\n";
    }
    呵呵,程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0
    步长造成程序异常而写的代码。这个代码我认为很值得一看。
    这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因
    避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。

    ----------------------------------------------
    事业是国家的,荣誉是单位的,成绩是领导的,工资是老婆的,财产是孩子的,错误是自己的。

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2006/4/18 17:00:00
     
     卷积内核 帅哥哟,离线,有人找我吗?
      
      
      威望:8
      头衔:总统
      等级:博士二年级(版主)
      文章:3942
      积分:27590
      门派:XML.ORG.CN
      注册:2004/7/21

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给卷积内核发送一个短消息 把卷积内核加入好友 查看卷积内核的个人资料 搜索卷积内核在『 C/C++编程思想 』的所有贴子 访问卷积内核的主页 引用回复这个贴子 回复这个贴子 查看卷积内核的博客4
    发贴心情 
    四、基于模板的通用排序:
    这个程序我想就没有分析的必要了,大家看一下就可以了。不明白可以在论坛上问。
    MyData.h文件
    ///////////////////////////////////////////////////////
    class CMyData
    {
    public:
      CMyData(int Index,char* strData);
      CMyData();
      virtual ~CMyData();

      int m_iIndex;
      int GetDataSize(){ return m_iDataSize; };
      const char* GetData(){ return m_strDatamember; };
      //这里重载了操作符:
      CMyData& operator =(CMyData &SrcData);
      bool operator <(CMyData& data );
      bool operator >(CMyData& data );

    private:
      char* m_strDatamember;
      int m_iDataSize;
    };
    ////////////////////////////////////////////////////////

    MyData.cpp文件
    ////////////////////////////////////////////////////////
    CMyData::CMyData():
    m_iIndex(0),
    m_iDataSize(0),
    m_strDatamember(NULL)
    {
    }

    CMyData::~CMyData()
    {
      if(m_strDatamember != NULL)
        delete[] m_strDatamember;
      m_strDatamember = NULL;
    }

    CMyData::CMyData(int Index,char* strData):
    m_iIndex(Index),
    m_iDataSize(0),
    m_strDatamember(NULL)
    {
      m_iDataSize = strlen(strData);
      m_strDatamember = new char[m_iDataSize+1];
      strcpy(m_strDatamember,strData);
    }

    CMyData& CMyData::operator =(CMyData &SrcData)
    {
      m_iIndex = SrcData.m_iIndex;
      m_iDataSize = SrcData.GetDataSize();
      m_strDatamember = new char[m_iDataSize+1];
      strcpy(m_strDatamember,SrcData.GetData());
      return *this;
    }

    bool CMyData::operator <(CMyData& data )
    {
      return m_iIndex<data.m_iIndex;
    }

    bool CMyData::operator >(CMyData& data )
    {
      return m_iIndex>data.m_iIndex;
    }
    ///////////////////////////////////////////////////////////

    //////////////////////////////////////////////////////////
    //主程序部分
    #include <iostream.h>
    #include "MyData.h"

    template <class T>
    void run(T* pData,int left,int right)
    {
      int i,j;
      T middle,iTemp;
      i = left;
      j = right;
      //下面的比较都调用我们重载的操作符函数
      middle = pData[(left+right)/2]; //求中间值
      do{
        while((pData[i]<middle) && (i<right))//从左扫描大于中值的数
          i++;     
        while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
          j--;
        if(i<=j)//找到了一对值
        {
          //交换
          iTemp = pData[i];
          pData[i] = pData[j];
          pData[j] = iTemp;
          i++;
          j--;
        }
      }while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

      //当左边部分有值(left<j),递归左半边
      if(left<j)
        run(pData,left,j);
      //当右边部分有值(right>i),递归右半边
      if(right>i)
        run(pData,i,right);
    }

    template <class T>
    void QuickSort(T* pData,int Count)
    {
      run(pData,0,Count-1);
    }

    void main()
    {
      CMyData data[] = {
        CMyData(8,"xulion"),
        CMyData(7,"sanzoo"),
        CMyData(6,"wangjun"),
        CMyData(5,"VCKBASE"),
        CMyData(4,"jacky2000"),
        CMyData(3,"cwally"),
        CMyData(2,"VCUSER"),
        CMyData(1,"isdong")
      };
      QuickSort(data,8);
      for (int i=0;i<8;i++)
        cout<<data[i].m_iIndex<<" "<<data[i].GetData()<<"\n";
      cout<<"\n";
    }

    ----------------------------------------------
    事业是国家的,荣誉是单位的,成绩是领导的,工资是老婆的,财产是孩子的,错误是自己的。

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2006/4/18 17:01:00
     
     GoogleAdSense
      
      
      等级:大一新生
      文章:1
      积分:50
      门派:无门无派
      院校:未填写
      注册:2007-01-01
    给Google AdSense发送一个短消息 把Google AdSense加入好友 查看Google AdSense的个人资料 搜索Google AdSense在『 C/C++编程思想 』的所有贴子 访问Google AdSense的主页 引用回复这个贴子 回复这个贴子 查看Google AdSense的博客广告
    2024/11/26 7:15:32

    本主题贴数4,分页: [1]

    管理选项修改tag | 锁定 | 解锁 | 提升 | 删除 | 移动 | 固顶 | 总固顶 | 奖励 | 惩罚 | 发布公告
    W3C Contributing Supporter! W 3 C h i n a ( since 2003 ) 旗 下 站 点
    苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
    109.375ms