新书推介:《语义网技术体系》
作者:瞿裕忠,胡伟,程龚
   XML论坛     W3CHINA.ORG讨论区     计算机科学论坛     SOAChina论坛     Blog     开放翻译计划     新浪微博  
 
  • 首页
  • 登录
  • 注册
  • 软件下载
  • 资料下载
  • 核心成员
  • 帮助
  •   Add to Google

    >> The future of AI, is the future of computer
    [返回] 计算机科学论坛计算机理论与工程『 人工智能 :: 机器学习|数据挖掘|进化计算 』 → 回答下面12题,给600 查看新帖用户列表

      发表一个新主题  发表一个新投票  回复主题  (订阅本版) 您是本帖的第 3490 个阅读者浏览上一篇主题  刷新本主题   树形显示贴子 浏览下一篇主题
     * 贴子主题: 回答下面12题,给600 举报  打印  推荐  IE收藏夹 
       本主题类别:     
     lincong8311 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:4
      积分:63
      门派:XML.ORG.CN
      注册:2008/8/30

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给lincong8311发送一个短消息 把lincong8311加入好友 查看lincong8311的个人资料 搜索lincong8311在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看lincong8311的博客楼主
    发贴心情 回答下面12题,给600

    有人能回答下面12个问题吗,我可以给600,

    1. In which sense can computers "learn"? Describe the framework of concept learning.

    2. Give some own example(s) of a learning problem (where we are in need of some results, but it is infeasible to obtain them in a direct way).

    3. What is "generalization" beyond observed data, and has it something to do with the notion of a "more general hypothesis"?

    4. Is it necessary to restrict the hypothesis space H, and how can (or should) it be done practically? Relate H to the notion of "inductive bias".

    5. How is it possible at all for learning algorithms to make predictions about unseen data? To what extent can we trust their results?

    6. Which computational difficulties can arise in concept learning tasks? How do various algorithms cope with these difficulties?

    7. Does the ability to choose own training examples add power to a learner?

    10. Characterize the concepts that are good to learn in the decision tree representation. Relate this matter to the inductive bias of decision tree learning.

    11. What are the ideas behind using ensembles of hypotheses?

    12. Which extensions of decision tree learning are in use, and how are they motivated?

    13. Which types of concepts are good to learn by neural networks, and why?
    联系方式,qq5459513


       收藏   分享  
    顶(0)
      




    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2008/9/6 11:45:00
     
     GoogleAdSense
      
      
      等级:大一新生
      文章:1
      积分:50
      门派:无门无派
      院校:未填写
      注册:2007-01-01
    给Google AdSense发送一个短消息 把Google AdSense加入好友 查看Google AdSense的个人资料 搜索Google AdSense在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 访问Google AdSense的主页 引用回复这个贴子 回复这个贴子 查看Google AdSense的博客广告
    2025/8/3 3:08:48

    本主题贴数1,分页: [1]

    管理选项修改tag | 锁定 | 解锁 | 提升 | 删除 | 移动 | 固顶 | 总固顶 | 奖励 | 惩罚 | 发布公告
    W3C Contributing Supporter! W 3 C h i n a ( since 2003 ) 旗 下 站 点
    苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
    577.148ms