新书推介:《语义网技术体系》
作者:瞿裕忠,胡伟,程龚
   XML论坛     W3CHINA.ORG讨论区     计算机科学论坛     SOAChina论坛     Blog     开放翻译计划     新浪微博  
 
  • 首页
  • 登录
  • 注册
  • 软件下载
  • 资料下载
  • 核心成员
  • 帮助
  •   Add to Google

    >> The future of AI, is the future of computer
    [返回] 计算机科学论坛计算机理论与工程『 人工智能 :: 机器学习|数据挖掘|进化计算 』 → 需要数据挖掘概念与技术2nd 的留下email(英文版) 查看新帖用户列表

      发表一个新主题  发表一个新投票  回复主题  (订阅本版) 您是本帖的第 15539 个阅读者浏览上一篇主题  刷新本主题   树形显示贴子 浏览下一篇主题
     * 贴子主题: 需要数据挖掘概念与技术2nd 的留下email(英文版) 举报  打印  推荐  IE收藏夹 
       本主题类别:     
     wendyneil 帅哥哟,离线,有人找我吗?天蝎座1986-11-18
      
      
      等级:大三(研究MFC有点眉目了!)
      文章:101
      积分:778
      门派:IEEE.ORG.CN
      注册:2007/3/16

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给wendyneil发送一个短消息 把wendyneil加入好友 查看wendyneil的个人资料 搜索wendyneil在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看wendyneil的博客楼主
    发贴心情 需要数据挖掘概念与技术2nd 的留下email(英文版)

    Data Mining:Concepts and Techniques
    Second Edition
    Jiawei Han
    University of Illinois at Urbana-Champaign
    Micheline Kamber

    Contents
    Foreword xix
    Preface xxi
    Chapter 1 Introduction 1
    1.1 What Motivated Data Mining? Why Is It Important? 1
    1.2 So, What Is Data Mining? 5
    1.3 Data Mining—On What Kind of Data? 9
    1.3.1 Relational Databases 10
    1.3.2 Data Warehouses 12
    1.3.3 Transactional Databases 14
    1.3.4 Advanced Data and Information Systems and Advanced
    Applications 15
    1.4 Data Mining Functionalities—What Kinds of Patterns Can Be
    Mined? 21
    1.4.1 Concept/Class Description: Characterization and
    Discrimination 21
    1.4.2 Mining Frequent Patterns, Associations, and Correlations 23
    1.4.3 Classification and Prediction 24
    1.4.4 Cluster Analysis 25
    1.4.5 Outlier Analysis 26
    1.4.6 Evolution Analysis 27
    1.5 Are All of the Patterns Interesting? 27
    1.6 Classification of Data Mining Systems 29
    1.7 Data Mining Task Primitives 31
    1.8 Integration of a Data Mining System with
    a Database or DataWarehouse System 34
    1.9 Major Issues in Data Mining 36
    1.10 Summary 39
    Exercises 40
    Bibliographic Notes 42
    Chapter 2 Data Preprocessing 47
    2.1 Why Preprocess the Data? 48
    2.2 Descriptive Data Summarization 51
    2.2.1 Measuring the Central Tendency 51
    2.2.2 Measuring the Dispersion of Data 53
    2.2.3 Graphic Displays of Basic Descriptive Data Summaries 56
    2.3 Data Cleaning 61
    2.3.1 Missing Values 61
    2.3.2 Noisy Data 62
    2.3.3 Data Cleaning as a Process 65
    2.4 Data Integration and Transformation 67
    2.4.1 Data Integration 67
    2.4.2 Data Transformation 70
    2.5 Data Reduction 72
    2.5.1 Data Cube Aggregation 73
    2.5.2 Attribute Subset Selection 75
    2.5.3 Dimensionality Reduction 77
    2.5.4 Numerosity Reduction 80
    2.6 Data Discretization and Concept Hierarchy Generation 86
    2.6.1 Discretization and Concept Hierarchy Generation for
    Numerical Data 88
    2.6.2 Concept Hierarchy Generation for Categorical Data 94
    2.7 Summary 97
    Exercises 97
    Bibliographic Notes 101
    Chapter 3 DataWarehouse and OLAP Technology: An Overview 105
    3.1 What Is a DataWarehouse? 105
    3.1.1 Differences between Operational Database Systems
    and Data Warehouses 108
    3.1.2 But, Why Have a Separate Data Warehouse? 109
    3.2 A Multidimensional Data Model 110
    3.2.1 From Tables and Spreadsheets to Data Cubes 110
    3.2.2 Stars, Snowflakes, and Fact Constellations:
    Schemas for Multidimensional Databases 114
    3.2.3 Examples for Defining Star, Snowflake,
    and Fact Constellation Schemas 117
    3.2.4 Measures: Their Categorization and Computation 119
    3.2.5 Concept Hierarchies 121
    3.2.6 OLAP Operations in the Multidimensional Data Model 123
    3.2.7 A Starnet Query Model for Querying
    Multidimensional Databases 126
    3.3 DataWarehouse Architecture 127
    3.3.1 Steps for the Design and Construction of Data Warehouses 128
    3.3.2 A Three-Tier Data Warehouse Architecture 130
    3.3.3 Data Warehouse Back-End Tools and Utilities 134
    3.3.4 Metadata Repository 134
    3.3.5 Types of OLAP Servers: ROLAP versus MOLAP
    versus HOLAP 135
    3.4 DataWarehouse Implementation 137
    3.4.1 Efficient Computation of Data Cubes 137
    3.4.2 Indexing OLAP Data 141
    3.4.3 Efficient Processing of OLAP Queries 144
    3.5 From DataWarehousing to Data Mining 146
    3.5.1 Data Warehouse Usage 146
    3.5.2 From On-Line Analytical Processing
    to On-Line Analytical Mining 148
    3.6 Summary 150
    Exercises 152
    Bibliographic Notes 154
    Chapter 4 Data Cube Computation and Data Generalization 157
    4.1 Efficient Methods for Data Cube Computation 157
    4.1.1 A Road Map for the Materialization of Different Kinds
    of Cubes 158
    4.1.2 Multiway Array Aggregation for Full Cube Computation 164
    4.1.3 BUC: Computing Iceberg Cubes from the Apex Cuboid
    Downward 168
    4.1.4 Star-cubing: Computing Iceberg Cubes Using
    a Dynamic Star-tree Structure 173
    4.1.5 Precomputing Shell Fragments for Fast High-Dimensional
    OLAP 178
    4.1.6 Computing Cubes with Complex Iceberg Conditions 187
    4.2 Further Development of Data Cube and OLAP
    Technology 189
    4.2.1 Discovery-Driven Exploration of Data Cubes 189
    4.2.2 Complex Aggregation at Multiple Granularity:
    Multifeature Cubes 192
    4.2.3 Constrained Gradient Analysis in Data Cubes 195
    3.2.4 Measures: Their Categorization and Computation 119
    3.2.5 Concept Hierarchies 121
    3.2.6 OLAP Operations in the Multidimensional Data Model 123
    3.2.7 A Starnet Query Model for Querying
    Multidimensional Databases 126
    3.3 DataWarehouse Architecture 127
    3.3.1 Steps for the Design and Construction of Data Warehouses 128
    3.3.2 A Three-Tier Data Warehouse Architecture 130
    3.3.3 Data Warehouse Back-End Tools and Utilities 134
    3.3.4 Metadata Repository 134
    3.3.5 Types of OLAP Servers: ROLAP versus MOLAP
    versus HOLAP 135
    3.4 DataWarehouse Implementation 137
    3.4.1 Efficient Computation of Data Cubes 137
    3.4.2 Indexing OLAP Data 141
    3.4.3 Efficient Processing of OLAP Queries 144
    3.5 From DataWarehousing to Data Mining 146
    3.5.1 Data Warehouse Usage 146
    3.5.2 From On-Line Analytical Processing
    to On-Line Analytical Mining 148
    3.6 Summary 150
    Exercises 152
    Bibliographic Notes 154
    Chapter 4 Data Cube Computation and Data Generalization 157
    4.1 Efficient Methods for Data Cube Computation 157
    4.1.1 A Road Map for the Materialization of Different Kinds
    of Cubes 158
    4.1.2 Multiway Array Aggregation for Full Cube Computation 164
    4.1.3 BUC: Computing Iceberg Cubes from the Apex Cuboid
    Downward 168
    4.1.4 Star-cubing: Computing Iceberg Cubes Using
    a Dynamic Star-tree Structure 173
    4.1.5 Precomputing Shell Fragments for Fast High-Dimensional
    OLAP 178
    4.1.6 Computing Cubes with Complex Iceberg Conditions 187
    4.2 Further Development of Data Cube and OLAP
    Technology 189
    4.2.1 Discovery-Driven Exploration of Data Cubes 189
    4.2.2 Complex Aggregation at Multiple Granularity:
    Multifeature Cubes 192
    4.2.3 Constrained Gradient Analysis in Data Cubes 195
    Chapter 6 Classification and Prediction 285
    6.1 What Is Classification? What Is Prediction? 285
    6.2 Issues Regarding Classification and Prediction 289
    6.2.1 Preparing the Data for Classification and Prediction 289
    6.2.2 Comparing Classification and Prediction Methods 290
    6.3 Classification by Decision Tree Induction 291
    6.3.1 Decision Tree Induction 292
    6.3.2 Attribute Selection Measures 296
    6.3.3 Tree Pruning 304
    6.3.4 Scalability and Decision Tree Induction 306
    6.4 Bayesian Classification 310
    6.4.1 Bayes’ Theorem 310
    6.4.2 Naïve Bayesian Classification 311
    6.4.3 Bayesian Belief Networks 315
    6.4.4 Training Bayesian Belief Networks 317
    6.5 Rule-Based Classification 318
    6.5.1 Using IF-THEN Rules for Classification 319
    6.5.2 Rule Extraction from a Decision Tree 321
    6.5.3 Rule Induction Using a Sequential Covering Algorithm 322
    6.6 Classification by Backpropagation 327
    6.6.1 A Multilayer Feed-Forward Neural Network 328
    6.6.2 Defining a Network Topology 329
    6.6.3 Backpropagation 329
    6.6.4 Inside the Black Box: Backpropagation and Interpretability 334
    6.7 Support Vector Machines 337
    6.7.1 The Case When the Data Are Linearly Separable 337
    6.7.2 The Case When the Data Are Linearly Inseparable 342
    6.8 Associative Classification: Classification by Association
    Rule Analysis 344
    6.9 Lazy Learners (or Learning from Your Neighbors) 347
    6.9.1 k-Nearest-Neighbor Classifiers 348
    6.9.2 Case-Based Reasoning 350
    6.10 Other Classification Methods 351
    6.10.1 Genetic Algorithms 351
    6.10.2 Rough Set Approach 351
    6.10.3 Fuzzy Set Approaches 352
    6.11 Prediction 354
    6.11.1 Linear Regression 355
    6.11.2 Nonlinear Regression 357
    6.11.3 Other Regression-Based Methods 358
    6.12 Accuracy and Error Measures 359
    6.12.1 Classifier Accuracy Measures 360
    6.12.2 Predictor Error Measures 362
    6.13 Evaluating the Accuracy of a Classifier or Predictor 363
    6.13.1 Holdout Method and Random Subsampling 364
    6.13.2 Cross-validation 364
    6.13.3 Bootstrap 365
    6.14 Ensemble Methods—Increasing the Accuracy 366
    6.14.1 Bagging 366
    6.14.2 Boosting 367
    6.15 Model Selection 370
    6.15.1 Estimating Confidence Intervals 370
    6.15.2 ROC Curves 372
    6.16 Summary 373
    Exercises 375
    Bibliographic Notes 378
    Chapter 7 Cluster Analysis 383
    7.1 What Is Cluster Analysis? 383
    7.2 Types of Data in Cluster Analysis 386
    7.2.1 Interval-Scaled Variables 387
    7.2.2 Binary Variables 389
    7.2.3 Categorical, Ordinal, and Ratio-Scaled Variables 392
    7.2.4 Variables of Mixed Types 395
    7.2.5 Vector Objects 397
    7.3 A Categorization of Major Clustering Methods 398
    7.4 Partitioning Methods 401
    7.4.1 Classical Partitioning Methods: k-Means and k-Medoids 402
    7.4.2 Partitioning Methods in Large Databases: From
    k-Medoids to CLARANS 407
    7.5 Hierarchical Methods 408
    7.5.1 Agglomerative and Divisive Hierarchical Clustering 408
    7.5.2 BIRCH: Balanced Iterative Reducing and Clustering
    Using Hierarchies 412
    7.5.3 ROCK: A Hierarchical Clustering Algorithm for
    Categorical Attributes 414
    7.5.4 Chameleon: A Hierarchical Clustering Algorithm
    Using Dynamic Modeling 416
    7.6 Density-Based Methods 418
    7.6.1 DBSCAN: A Density-Based Clustering Method Based on
    Connected Regions with Sufficiently High Density 418
    7.6.2 OPTICS: Ordering Points to Identify the Clustering
    Structure 420
    7.6.3 DENCLUE: Clustering Based on Density
    Distribution Functions 422
    7.7 Grid-Based Methods 424
    7.7.1 STING: STatistical INformation Grid 425
    7.7.2 WaveCluster: Clustering Using Wavelet Transformation 427
    7.8 Model-Based Clustering Methods 429
    7.8.1 Expectation-Maximization 429
    7.8.2 Conceptual Clustering 431
    7.8.3 Neural Network Approach 433
    7.9 Clustering High-Dimensional Data 434
    7.9.1 CLIQUE: A Dimension-Growth Subspace Clustering Method 436
    7.9.2 PROCLUS: A Dimension-Reduction Subspace Clustering
    Method 439
    7.9.3 Frequent Pattern–Based Clustering Methods 440
    7.10 Constraint-Based Cluster Analysis 444
    7.10.1 Clustering with Obstacle Objects 446
    7.10.2 User-Constrained Cluster Analysis 448
    7.10.3 Semi-Supervised Cluster Analysis 449
    7.11 Outlier Analysis 451
    7.11.1 Statistical Distribution-Based Outlier Detection 452
    7.11.2 Distance-Based Outlier Detection 454
    7.11.3 Density-Based Local Outlier Detection 455
    7.11.4 Deviation-Based Outlier Detection 458
    7.12 Summary 460
    Exercises 461
    Bibliographic Notes 464
    Chapter 8 Mining Stream, Time-Series, and Sequence Data 467
    8.1 Mining Data Streams 468
    8.1.1 Methodologies for Stream Data Processing and
    Stream Data Systems 469
    8.1.2 Stream OLAP and Stream Data Cubes 474
    8.1.3 Frequent-Pattern Mining in Data Streams 479
    8.1.4 Classification of Dynamic Data Streams 481
    8.1.5 Clustering Evolving Data Streams 486
    8.2 Mining Time-Series Data 489
    8.2.1 Trend Analysis 490
    8.2.2 Similarity Search in Time-Series Analysis 493
    8.3 Mining Sequence Patterns in Transactional Databases 498
    8.3.1 Sequential Pattern Mining: Concepts and Primitives 498
    8.3.2 Scalable Methods for Mining Sequential Patterns 500
    8.3.3 Constraint-Based Mining of Sequential Patterns 509
    8.3.4 Periodicity Analysis for Time-Related Sequence Data 512
    8.4 Mining Sequence Patterns in Biological Data 513
    8.4.1 Alignment of Biological Sequences 514
    8.4.2 Hidden Markov Model for Biological Sequence Analysis 518
    8.5 Summary 527
    Exercises 528
    Bibliographic Notes 531
    Chapter 9 Graph Mining, Social Network Analysis, and Multirelational
    Data Mining 535
    9.1 Graph Mining 535
    9.1.1 Methods for Mining Frequent Subgraphs 536
    9.1.2 Mining Variant and Constrained Substructure Patterns 545
    9.1.3 Applications: Graph Indexing, Similarity Search, Classification,
    and Clustering 551
    9.2 Social Network Analysis 556
    9.2.1 What Is a Social Network? 556
    9.2.2 Characteristics of Social Networks 557
    9.2.3 Link Mining: Tasks and Challenges 561
    9.2.4 Mining on Social Networks 565
    9.3 Multirelational Data Mining 571
    9.3.1 What Is Multirelational Data Mining? 571
    9.3.2 ILP Approach to Multirelational Classification 573
    9.3.3 Tuple ID Propagation 575
    9.3.4 Multirelational Classification Using Tuple ID Propagation 577
    9.3.5 Multirelational Clustering with User Guidance 580
    9.4 Summary 584
    Exercises 586
    Bibliographic Notes 587
    Chapter 10 Mining Object, Spatial, Multimedia, Text, andWeb Data 591
    10.1 Multidimensional Analysis and Descriptive Mining of Complex
    Data Objects 591
    10.1.1 Generalization of Structured Data 592
    10.1.2 Aggregation and Approximation in Spatial and Multimedia Data
    Generalization 593
    10.1.3 Generalization of Object Identifiers and Class/Subclass
    Hierarchies 594
    10.1.4 Generalization of Class Composition Hierarchies 595
    10.1.5 Construction and Mining of Object Cubes 596
    10.1.6 Generalization-Based Mining of Plan Databases by
    Divide-and-Conquer 596
    10.2 Spatial Data Mining 600
    10.2.1 Spatial Data Cube Construction and Spatial OLAP 601
    10.2.2 Mining Spatial Association and Co-location Patterns 605
    10.2.3 Spatial Clustering Methods 606
    10.2.4 Spatial Classification and Spatial Trend Analysis 606
    10.2.5 Mining Raster Databases 607
    10.3 Multimedia Data Mining 607
    10.3.1 Similarity Search in Multimedia Data 608
    10.3.2 Multidimensional Analysis of Multimedia Data 609
    10.3.3 Classification and Prediction Analysis of Multimedia Data 611
    10.3.4 Mining Associations in Multimedia Data 612
    10.3.5 Audio and Video Data Mining 613
    10.4 Text Mining 614
    10.4.1 Text Data Analysis and Information Retrieval 615
    10.4.2 Dimensionality Reduction for Text 621
    10.4.3 Text Mining Approaches 624
    10.5 Mining theWorld WideWeb 628
    10.5.1 Mining the Web Page Layout Structure 630
    10.5.2 Mining the Web’s Link Structures to Identify
    Authoritative Web Pages 631
    10.5.3 Mining Multimedia Data on the Web 637
    10.5.4 Automatic Classification of Web Documents 638
    10.5.5 Web Usage Mining 640
    10.6 Summary 641
    Exercises 642
    Bibliographic Notes 645
    Chapter 11 Applications and Trends in Data Mining 649
    11.1 Data Mining Applications 649
    11.1.1 Data Mining for Financial Data Analysis 649
    11.1.2 Data Mining for the Retail Industry 651
    11.1.3 Data Mining for the Telecommunication Industry 652
    11.1.4 Data Mining for Biological Data Analysis 654
    11.1.5 Data Mining in Other Scientific Applications 657
    11.1.6 Data Mining for Intrusion Detection 658
    11.2 Data Mining System Products and Research Prototypes 660
    11.2.1 How to Choose a Data Mining System 660
    11.2.2 Examples of Commercial Data Mining Systems 663
    11.3 Additional Themes on Data Mining 665
    11.3.1 Theoretical Foundations of Data Mining 665
    11.3.2 Statistical Data Mining 666
    11.3.3 Visual and Audio Data Mining 667
    11.3.4 Data Mining and Collaborative Filtering 670
    11.4 Social Impacts of Data Mining 675
    11.4.1 Ubiquitous and Invisible Data Mining 675
    11.4.2 Data Mining, Privacy, and Data Security 678
    11.5 Trends in Data Mining 681
    11.6 Summary 684
    Exercises 685
    Bibliographic Notes 687
    Appendix An Introduction to Microsoft’s OLE DB for
    Data Mining 691
    A.1 Model Creation 693
    A.2 Model Training 695
    A.3 Model Prediction and Browsing 697
    Bibliography 703
    Index 745


       收藏   分享  
    顶(0)
      




    ----------------------------------------------
    Cogito, ergo sum.                                       
                                                                        
    by René Descartes


    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2009/4/14 11:51:00
     
     geniusgao 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:5
      积分:86
      门派:XML.ORG.CN
      注册:2006/10/24

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给geniusgao发送一个短消息 把geniusgao加入好友 查看geniusgao的个人资料 搜索geniusgao在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看geniusgao的博客2
    发贴心情 
    geniusgao@gmail.com,thank you!
    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2009/4/29 13:44:00
     
     wendyneil 帅哥哟,离线,有人找我吗?天蝎座1986-11-18
      
      
      等级:大三(研究MFC有点眉目了!)
      文章:101
      积分:778
      门派:IEEE.ORG.CN
      注册:2007/3/16

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给wendyneil发送一个短消息 把wendyneil加入好友 查看wendyneil的个人资料 搜索wendyneil在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看wendyneil的博客3
    发贴心情 
    明天发给你  不好意思

    ----------------------------------------------
    Cogito, ergo sum.                                       
                                                                        
    by René Descartes


    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2009/5/6 22:29:00
     
     saturday1949 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:4
      积分:68
      门派:XML.ORG.CN
      注册:2008/12/24

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给saturday1949发送一个短消息 把saturday1949加入好友 查看saturday1949的个人资料 搜索saturday1949在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看saturday1949的博客4
    发贴心情 
    saturday1949@gmail.com
    thank you very much!
    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2009/5/9 21:56:00
     
     蜗牛慢吞吞 美女呀,离线,快来找我吧!
      
      
      等级:大一新生
      文章:1
      积分:54
      门派:XML.ORG.CN
      注册:2009/6/3

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给蜗牛慢吞吞发送一个短消息 把蜗牛慢吞吞加入好友 查看蜗牛慢吞吞的个人资料 搜索蜗牛慢吞吞在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看蜗牛慢吞吞的博客5
    发贴心情 
    weijingyao062@126.com 非常感谢哦~
    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2009/6/3 17:54:00
     
     wendyneil 帅哥哟,离线,有人找我吗?天蝎座1986-11-18
      
      
      等级:大三(研究MFC有点眉目了!)
      文章:101
      积分:778
      门派:IEEE.ORG.CN
      注册:2007/3/16

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给wendyneil发送一个短消息 把wendyneil加入好友 查看wendyneil的个人资料 搜索wendyneil在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看wendyneil的博客6
    发贴心情 
    已发注意查收!!

    ----------------------------------------------
    Cogito, ergo sum.                                       
                                                                        
    by René Descartes


    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2009/7/5 17:03:00
     
     zwdeng 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:2
      积分:59
      门派:XML.ORG.CN
      注册:2009/7/21

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给zwdeng发送一个短消息 把zwdeng加入好友 查看zwdeng的个人资料 搜索zwdeng在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看zwdeng的博客7
    发贴心情 thankyou!
    EMAIL: zwdeng@ecnu.edu.cn
    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2009/7/21 18:12:00
     
     wendyneil 帅哥哟,离线,有人找我吗?天蝎座1986-11-18
      
      
      等级:大三(研究MFC有点眉目了!)
      文章:101
      积分:778
      门派:IEEE.ORG.CN
      注册:2007/3/16

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给wendyneil发送一个短消息 把wendyneil加入好友 查看wendyneil的个人资料 搜索wendyneil在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看wendyneil的博客8
    发贴心情 
    楼上的email有问题,敲错了么。发过去不存在!

    ----------------------------------------------
    Cogito, ergo sum.                                       
                                                                        
    by René Descartes


    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2009/7/21 19:31:00
     
     zwdeng 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:2
      积分:59
      门派:XML.ORG.CN
      注册:2009/7/21

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给zwdeng发送一个短消息 把zwdeng加入好友 查看zwdeng的个人资料 搜索zwdeng在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看zwdeng的博客9
    发贴心情 不好意思哦
    不好意思,不知道学校的信箱不能用,烦请您发到dengwei555006@163.com,谢谢
    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2009/7/22 8:26:00
     
     wendyneil 帅哥哟,离线,有人找我吗?天蝎座1986-11-18
      
      
      等级:大三(研究MFC有点眉目了!)
      文章:101
      积分:778
      门派:IEEE.ORG.CN
      注册:2007/3/16

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给wendyneil发送一个短消息 把wendyneil加入好友 查看wendyneil的个人资料 搜索wendyneil在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 引用回复这个贴子 回复这个贴子 查看wendyneil的博客10
    发贴心情 
    已发,注意查收!

    ----------------------------------------------
    Cogito, ergo sum.                                       
                                                                        
    by René Descartes


    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2009/7/22 18:56:00
     
     GoogleAdSense天蝎座1986-11-18
      
      
      等级:大一新生
      文章:1
      积分:50
      门派:无门无派
      院校:未填写
      注册:2007-01-01
    给Google AdSense发送一个短消息 把Google AdSense加入好友 查看Google AdSense的个人资料 搜索Google AdSense在『 人工智能 :: 机器学习|数据挖掘|进化计算 』的所有贴子 访问Google AdSense的主页 引用回复这个贴子 回复这个贴子 查看Google AdSense的博客广告
    2025/8/10 4:08:45

    本主题贴数12,分页: [1] [2]

    管理选项修改tag | 锁定 | 解锁 | 提升 | 删除 | 移动 | 固顶 | 总固顶 | 奖励 | 惩罚 | 发布公告
    W3C Contributing Supporter! W 3 C h i n a ( since 2003 ) 旗 下 站 点
    苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
    119.141ms