以文本方式查看主题

-  计算机科学论坛  (http://bbs.xml.org.cn/index.asp)
--  『 计算机考研交流 』   (http://bbs.xml.org.cn/list.asp?boardid=67)
----  [原创]离散:关于一个循环群的生成元的问题  (http://bbs.xml.org.cn/dispbbs.asp?boardid=67&rootid=&id=56806)


--  作者:cpkug
--  发布时间:12/16/2007 11:47:00 AM

--  [原创]离散:关于一个循环群的生成元的问题
离散数据习题集(抽象代数分册),P16  1.2.2:
1.2.2 在整数集Z上定义 a*b=a+b-2 对于任意 a,b ∈Z
问<Z,*>是不是循环群?

答案:它是一个循环群,生成元是3和1,其中 3^n=n+2 n∈Z,1^n=2-n n∈Z。

答案并未给出一个更为详细的推出“3是一个生成元”的过程。

不看答案,真的很难就能想出“3是一个生成元”;
在知道了答案以后,我进行了分析推理,下面是我关于其“3是一个生成元”的推理,但总觉得推理有些不够,不知该补充些什么?

3^2 = 3 * 3 = 3 + 3 - 2 = 4,
3^3 = (3^2) * 3 = 4 * 3 = 4 + 3 - 2 = 5,
3^4 = (3^3) * 3 = 5 * 3 = 5 + 3 - 2 = 6,
3^5 = (3^4) * 3 = 6 * 3 = 6 + 3 - 2 = 7,
...
3^n = n+2,

问题:
1> 不知上面的过程对于结论“3是一个生成元”的推理是否完备,是否需要补充些什么?
2> 如果是考试这样写推理是否会被扣分?
3> 如果上面的推理不够,能否给出一个让人信服的、严谨的推理?

请高手帮忙解答一下,谢谢了!


--  作者:Logician
--  发布时间:12/16/2007 2:11:00 PM

--  
首先,只要找出一个生成元并证明它确实是生成元就行了。
其次,我们知道,如果a是一个群的生成元,那么a^{-1}也是它的生成元。

所以,要论证1或3是生成元很简单,只需说明,
(1) 3^{-1}=1
(2) 对任意x,有x*3 = x+3-2 = x+1,所以(由数学归纳法可证)对任意自然数n,有3^n = n+2。而对任意x,有x*1=x+1-2=x-1,所以(由数学归纳法可证)对任意自然数n,有3^{-n}=(3^{-1})^n = 1^n = 2-n。所以3是生成元,1也是生成元。


--  作者:cpkug
--  发布时间:12/16/2007 6:56:00 PM

--  
谢谢!
--  作者:zshao
--  发布时间:12/16/2007 11:21:00 PM

--  cpkug,劳驾:
cpkug,劳驾把《抽象代数--小册子》不会的都贴出来讨论,很多同学好象没买到书。thanks
--  作者:zhjf83
--  发布时间:12/17/2007 3:56:00 PM

--  
en  贴出来.
--  作者:九九
--  发布时间:12/18/2007 1:11:00 PM

--  
建立一个映射F: N -> N
  f(x)=x+2
1)易知映射是良定义的;
2)f(a)*f(b)=f(a*b) -> F:是<N +> -> <N *>的一个同态映射
3)F是单射的:对任意的a,b;f(a)=f(b)->a=b;
4)F是满射的: 对任意的y=b,存在x=b-2使得f(x)=y;
综上F是<N +> -> <N *>的同构映射

<N +> 的性质是我们已知的;
由同构我们可以得到<N *>的性质:
  以1 3为生成员的循环群

Ps: 同态和同构是重点,强化以下。。。
     有啥问题,希望大家帮忙指点


--  作者:Logician
--  发布时间:12/18/2007 5:51:00 PM

--  
你的证明是对的。
--  作者:cpkug
--  发布时间:12/18/2007 10:20:00 PM

--  
海淀图书城有呀,我在那里买的,怎么,卖完了?

没太多时间看了,有问题一定贴!!

谢谢支持!


以下是引用九九在2007-12-18 13:11:00的发言:
2)f(a)*f(b)=f(a*b) -> F:是<N +> -> <N *>的一个同态映射

应该是:
f(a + b) = f(a) * f(b) => F:是<N +> -> <N *>的一个同态映射

[此贴子已经被作者于2007-12-18 23:09:42编辑过]

--  作者:九九
--  发布时间:12/19/2007 4:36:00 PM

--  
哎,还是经常出这样的错误!
--  作者:cpkug
--  发布时间:12/20/2007 10:23:00 PM

--  
以下是引用九九在2007-12-19 16:36:00的发言:
哎,还是经常出这样的错误!

感觉你是一口气答出来的,没什么,思路本身是对的,大家都感觉到了,不必在意了,谁仓促都可能忽视某些细节,无关大体,只是考试时细些心就行了!


--  作者:zshao
--  发布时间:12/24/2007 11:06:00 PM

--  
有必要说明:
f(x)=x+2是良定义的么?;

W 3 C h i n a ( since 2003 ) 旗 下 站 点
苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
7,898.438ms